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Summary

The interpretation of neural networks and their predictions is a major challenge.
Neural networks are considered as "black boxes", in which patient data are injected as
input and a prediction is calculated as output without explanation. The European Union
recently adopted a legal text for users of learning algorithms to be able to explain the
decisions of a predictive model. There is therefore a real need to make neural networks
more interpretable and this is particularly true in the medical field. It is important to
ensure that the neural network bases its predictions on reliable patient representation and
does not focus on irrelevant artefacts present in the training data. Without explanation
of the predictions, physicians can not trust the model whatever its performances.
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Abstract

We live in a time where possibilities are endless and deep learning technology can help us to make
new technological advances. It greatly increases our understanding of biology, including genomics,
proteomics, metabolomics, and immunomics. Despite that, we are still facing the problem of deep
learning comprehension and interpretation, and the latest legislation requires us to have a network
reliable and interpretable.

The internship focuses on the design of a model of neural networks including on one hand, the
learning part with biological constraint, and interpretation on the other hand. The goal is to
remove the black box aspect of deep learning models. We must be able to trust them before we
adopt them because deep learning networks are leading on the analysis of complex data structures.
We will follow a methodology by creating a model that we will name InOmicNet (Interpretable
Omic Network).

The subject of this memoir is divided into three parts. The first is about all state of art since it
involves applying methods of explaining networks of deep neurons. This part will mainly constitute
the techniques that are currently used.

In the second part, we will focus on the approach and we will build an architecture integrating
biological information and a custom cost function to consider this information. The number of
layers will also be determined according to the distribution of GO functions per depth. We are in
the case of self-explanation model and not on a a posteriori interpretation model.

The last part will be on biological interpretation. It is necessary to associate with relevant
neurons, biological functions, metabolic pathways or diseases. it will validate existing methods of
explanation in the field of medicine precision. We can conclude with a probability test whether our
network makes conclusions in a hazardous way or the network has learned the biological elements
involved in cancer. This will be the subject of the experimental part of the dissertation.
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Chapter 1

Introduction

1.1 The IBISC Laboratory
Created in 2006, the IBISC (Informatique, Bio-informatique et Systèmes Complexes) laboratory
is a strong STIC (Sciences et technologies de l’information et de la communication) pole on
the University of Evry Val d’Essonne. Its tutors are the University of Evry Val d’Essonne and
ENSIIE (École nationale supérieure d’informatique pour l’industrie et l’entreprise). It is also part
of Genopole.
The IBISC laboratory is made up of 4 teams (AROBAS, COSMO, IRA2 (Interaction, Réalité
virtuelle Augmentée, Robotique Ambiante), SIAM (Signal, Image et AutoMatique)) whose activities
fall into two scientific areas STIC & SMART SYSTEM and STIC & VIVANT.

• STIC & SMART SYSTEM: The research defined in this axis deals with the design of
autonomous and intelligent systems. The notion of system refers to both fleets of road
and air vehicles, robots, distributed and communicating software and services, or intelligent
hardware components with interacting sensors.

• STIC & VIVANT: this interdisciplinary research covers a wide spectrum of biology issues at
different scales of the living: analysis of biological and biomedical data and signals, modelling
of biological systems, learning of surgical gestures and assistance to the individual.

The AROBAS team focuses on three areas: Algorithms and Operational Research, Bioinformatics,
and Statistical Learning.

1.2 Internship Context
The European regulation imposes specific consent requirements on the profiling and use of analytical
solutions: the consent must be informed, recorded and presented to the auditors details on the
use of profiling. This right to the explanation, inscribed in the GDPR (General Data Protection
Regulation), becomes a thorny subject for the world of artificial intelligence.

In the name of transparency, companies using artificial intelligence will be forced to popularize
the process of their algorithms. Mounir Majhoubi, secretary of state in charge of the digital
explained to the National Assembly, "if an algorithm cannot be explained, it cannot be used in
the public service".
In this context, I carried out my internship at the IBISC laboratory, since it is essential to have a
transparency on the model when we use it for a critical area such as health or defense.

Artificial intelligence, and more precisely deep learning, has become popular thanks to the technological
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CHAPTER 1. INTRODUCTION

evolution of our machines and their components, which allows us to build complex models with
a consequent number of parameters, and to be able to have our results in a reasonable time. As
I write this memoir, evolution continues to progress very rapidly with increasingly powerful GPUs
(Graphics Processing Unit) and techniques associated with deep learning in several areas, such as
computer vision or natural language processing, that are currently being used on our daily lives.

These aspects which are the progress of the capacities of our computational powers as well as the
new consideration in our current legislations are the main reasons that put our work forward, and
will lead to the establishment of a future decision assistant for physicians.

1.3 Plan
The subject of this dissertation is therefore to provide tools in line with the new GDPR directives
of the European Union. Like we said previously, to be put into production in a sensitive area such
as medicine or defense, the model must be interpretable, but in the case of deep learning it is
more complex.
We use transcriptomic data (gene expressions). Many methods for interpreting the results of
neural networks applied to image analysis are already functional, but we are facing a challenge
because we will not use a convolutional network and our inputs are omics data.

In the medical field, data are very scarce but there can be conversely a very large number of
input variables. In our case, dimensionality of input data does not pose a big concern to neural
networks in a general way. To solve this problem of interpretation we will pass first by the biological
knowledge, by defining what a gene as well as the transcriptomic data are, and a view on the cancer
too.
Then we will discuss the approach of learning techniques in the context of omics data and more
precisely on the case of deep learning in the context of our method. We will use a dense network
with some additional layers useful for the improvement of the learning during training.

An in-depth study of the current state of the art to argue what methods are developed and used
in the case of interpretation. We will introduce the two methods that are based on perturbations
and gradient methods with their variants.
After studying the main methods made popular by their effectiveness and their abilities to adapt
to different problems, we will develop in detail the methodology used to make transparent the
prediction of a network when it predicts a cancer for a patient.

We will first explain the gene ontology (GO), as an acyclic directed graph which contains the
information of the biological functions. We will then associate the descendants of each GO
function with a large matrix of adjacency, in order to stick each level of the graph to a layer. This
allows the matrix to learn to adapt to non-descendant connectivity when updating weights at each
of its backpropagation (i.e., we will add this information to a custom cost function by adding a
coefficient regularized term).
It will also be a question of developing a vast monitoring system which will serve as a demonstration
on the reliability of the model and its consistency and from its good return we will then be able
to develop on the biological interpretation.

We will recover the biological functions associated with the best scores according to a method of
relevance scores then also a multitude of backpropagation analysis according to the best neurons
per layer in order to recover the best probes used in input (the 5000 best probes for example).
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Chapter 2

Definitions

An interpretation [1] is a projection of an explicit notion (e.g. an expected category) into a domain
that humans can create meaning of and an explanation is a set of characteristics of an interpretable
domain that have led to a decision-making process (e.g. classification or regression).

Interpretation is a very broad field in deep learning. To define what this term means, we will
use the definitions of [2]. However, we will not repeat the same terms. Indeed, in the article
by [2], it is a question of interpretation and explanation. To avoid confusion, we will talk about
interpreting a model and interpreting a prediction.

They are trying to refine [2] the discourse on interpretability. Many articles suggest interpretability
as a way of generating confidence. But what is confidence, though ? Does it relate to the belief
in the results of the model, the robustness or some other ownership of the choices it produces ?
Does interpretability merely imply a low-level mechanistic knowledge of our designs ? If so, does
it apply to the features, parameters, models, or training algorithms ? Other publications suggest a
connection between an interpretable model and one wich uncovers causal an interpretable model
and one which uncovers causal structure in data. Some publications equate interpretability with
understandability or intelligibility, i.e, that we can grasp how the models work. The problem can
also arise when the dynamics of the deployment environment differ from the training environment.
In all instances, interpretations represent those goals that we consider significant but are struggling
to correctly model.

2.0.1 Interpreting models
The interpretation of a model (interpretation) consists in making the link between an abstract
concept (a predicted class) and a domain that would make sense for a human being and we must
be careful not to be confused with the interpretation of a prediction.
More concretely, this means that the interpretable model must be able to explain what a class is,
using a process understandable by humans. Humans have an innate ability of their own to be able
to interpret the facts surrounding them.

The interpretation of a model is sometimes called Model Transparency ([3], [4]). Indeed, the
interpretation consists in solving the problem of the black box, hence the expression "transparency".
Confidence in a model can be defined objectively such as metrics (precision, recall, ...).
In this sense, we might care not only about how often a model is right but also for which examples
it is right. We will now see some important facts on model interpretation:

• Causality: The job of inferring causal relationships from observational data has been widely
researched. But these techniques appear to depend on powerful judgments about previous
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CHAPTER 2. DEFINITIONS

understanding.

• Informativeness: While the goal of the device may be to decrease mistake, the real-world
goal is to provide helpful data. The most evident manner the model conveys information is
through its inputs. An interpretation may demonstrate informative even without shedding
touch on the internal functioning of the model.

• Fair and Ethical Decision-Making: Algorithms conform to ethical standards [5]. Moreover,
the same regulations suggest that algorithmic decisions should be contestable.

• Algorithmic Transparency: Modern deep learning techniques, on the other side, absence
this kind of algorithmic transparency. While heuristic optimization procedures for neural
networks are demonstrably powerful, we do not understand how they operate and cannot
at current ensure a priori that they will work on fresh issues. Note, however, that human
beings do not display these types of transparency.

• Post-hoc Interpretability: Although post-hoc interpretability often fails to clarify exactly
how a model operates, they may nevertheless provide helpful data for professionals and end
consumers of teaching techniques.

2.0.2 Interpreting predictions
The interpretation of a prediction is the set of variables in the interpretable domain that contributed
to the decision making for a given example. For example on images to explain the decision making,
we highlight the pixels of our images that have been determining.
We discuss of post-hoc interpretability, or else [4] speak of Model functionality to describe the
interpretation of a prediction.

There exist many auxiliary criteria that one may wish to optimize. Privacy implies that the
technique is used to protect delicate information in the records. Properties such as quality
and robustness determine whether algorithms achieve certain concentrations of efficiency in the
presence of entry parameter variability. Causality means that the expected yield shift owing to
disruption will happen in the actual scheme and that the available technique provides data.

In the field of psychology literature, where [6] notes “explanations may highlight an incompleteness”
we argue that interpretability can assist in qualitatively ascertaining whether other desiderata such
as fairness, privacy, reliability, robustness, causality, usability and trust are met. For example,
one can provide a feasible explanation that fails to correspond to a causal structure, exposing a
potential concern.

We contend that the need for interpretability stems from incompleteness in the formalization of the
issue, generating a basic obstacle to optimization and assessment. Note that the incompleteness
is separate from the error: the merged estimation of the place of a missile may be unsure, but this
error can be rigorously quantified and officially justified.

2.1 Biological notions

2.1.1 Gene
A gene is a DNA (DeoxyribNnucleic Acid) sequence encoding a character, i.e., an ordered sequence
of nucleotides having a beginning and an end. DNA is therefore the medium of genetic information.
The comparison of various DNA fragments of different species shows that the only parameter that
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CHAPTER 2. DEFINITIONS

varies within a DNA molecule is the order in which the nucleotides succeed each other and shows
that they are identifiable not only by the sequence of nucleotide sequences, but also by the length
of the sequence.

Figure 2.1: Illustration of DNA.

Gene expression refers to the set of biochemical processes by which the hereditary information
stored in a gene is read to lead to the production of molecules that will have an active role in cell
function, like proteins or RNAs (RiboNucleic Acid). Even if all the cells of an organism share the
same genome, certain genes are expressed only in certain cells, at certain time during the life of
the organism or under certain conditions.

The regulation of gene expression is therefore the fundamental mechanism for cell differentiation,
morphogenesis and adaptability of a living organism to its environment.

2.1.2 Transcriptome
The transcriptome is defined as the set of transcripts present in a cell at a given moment and
under given conditions. It is an image of the functional state of the genome.
DNA microarrays make it possible to study the transcriptome by simultaneously observing the
expression of several thousand genes in a given cell or tissue, thus measuring the changes in the
different cell states.
The microarray technique is based on the hybridization principle [7] which states that two complementary
nucleic acid fragments can associate and dissociate reversibly under the action of heat and the
saline concentration of the medium.

Figure 2.2: Illustration of Transcriptome position

Specifically, a DNA chip is a rigid support (glass or nylon) of a few square centimetres, on which
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CHAPTER 2. DEFINITIONS

short DNA sequences have been deposited.
These short sequences are termed "probes" corresponding to synthetic oligonucleotides or PCR
(polymerase chain reaction) products, then the probes have the distinction of having been chosen
to be specific to a single gene and this microdevice is brought into contact with the RNAs extracted
from the samples to be analysed called "targets".
These targets are marked by incorporation of radioelements or fluorochromes. After acquisition
of the hybridization images, the quantification of the hybridization signals reflects the level of
expression, in the initial sample, of each of the genes represented on the chip.

The first effort to collect a temporary animal transcriptome was released in 1991 [8] and 609 mRNA
samples from the human brain were reference. In 2008 [9], two mammalian transcriptomes, made
up of millions of transcript-derived sequences spanning 16,000 genes, were reference. Transcriptomic
techniques are very simultaneous and involve big calculations to generate significant information
for DNA chip and RNA-Seq tests.

In RNA-seq analysis [10], we use filtering criteria to reduce the consideration of differentially
expressed genes whose expression levels could be tolerably hypothesized to be below the level
essential to affect cellular function or phenotype. Thus, we are permitted to emphasize on those
that are most likely to be biologically significant [11]. Normalization is an imperative step in the
RNA-seq data analysis. The amount of reads which are monitored per gene relies on the expression
level and the length of the gene, and on the RNA composition of the sample ([12], [13]).

The effect of gene length and total sample RNA composition is lessened by the normalization
process. As a result, a direct clear representation of the targeted gene expression level is shown
by the normalized read counts. Several normalization methods are used in RNA-seq analysis.
Some of them are Total Count (TC), Upper Quartile (UQ), Median (Med), DESeq (Differential
gene expression analysis based on the negative binomial distribution), Quantile (Q) and Reads
PerKilobase per Million mapped reads (RPKM).

2.1.3 Cancer
Our body is made up of thousands of billions of cells grouped together to form tissues and organs.
The genes in the nucleus of each cell are essential for regulation of growth, metabolism, division
and apoptosis tell it when to grow, work, divide and die. Normally, our cells function in harmony
and we remain healthy.
But when our DNA is altered or harmed, genes can mutate. Mutated genes do not function
correctly because the DNA directives are mistaken. Then, the cells that need to be removed or
die can split and develop into a disease that can contribute to cancer.

Cancer is no longer a disease from an organ, but a disease defined by the precise biological
nature of its cellular composition.
The biological and clinical study of cancer nowadays involves the molecular characterization
of tumours, DNA mutations and gene expression are indicative of the mechanisms of tumour
progression and illuminate both the understanding of cancer biology and the therapeutic choices.

In this context, the emergence of new technologies of systematic molecular and subcellular investigation
has revolutionized the research against cancer.
These technologies generate huge amounts of data, such as DNA chips (2 million measurements
per chip), massive cell phenotyping, or next-generation sequencing (about 10 Gigabytes and a few
hundred million sequences per experiment).
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CHAPTER 2. DEFINITIONS

The volumes, the completeness, and the resolution of the information brought by these technologies
lead us to propose new strategies of analysis and new concepts, with a rigorous scientific approach.

Laboratory tests measure the composition of certain substances in the body such as blood, urine
and other liquids. Laboratory tests are important and provide information on the functioning of
body organs, but one cannot rely solely on laboratory tests to make a diagnosis. Imaging studies
include computed tomography (CT), ultrasound, magnetic resonance imaging (MRI), positron
emission tomography (PET) and radiography. Biopsy is an operation performed to collect a
sample of tissue or tumour from the body to find out if it contains cancer cells, the sample is
examined under a microscope. The diagnostic process may seem long and discouraging, but it
is important that the health care team eliminate any other possible cause of the health problem
before making a diagnosis of cancer.

Because there is not one but multiple cancers and because each patient is unique, different types
of treatments exist and the choice of treatments is adapted according to each situation. The main
types of cancer treatments are:

• Surgery.

• Chemotherapy.

• Targeted Therapies.

• Radiotherapy.

• Hormone Therapy.

All these treatments are aimed at eliminating cancer cells. They act either locally, on all cells but
more effectively on cancer cells present in the body.

2.2 Learnings on Omics Data
There are different types of learning techniques and in the context of this memoir, we will focus
on supervised learning.

Here we are dealing omics data and the problems encountered, the experimental conditions, as
well as the objectives targeted vary considerably: pre-selection of genes, considering of kinetics,
importance of covariates, presence of phenotypic variables...
Nevertheless, the major specificity of these data, the one that most questioned the good use
and know-how of the statistician, is the very high dimensionality of the number of genes whose
expression is observed on a comparatively very small number of biological samples. Formally, the
problem arises as the observation of a variable, transcriptomics expression (or quantity of messenger
ribonucleic acid - mRNA- produced), in experimental situations that cross at least two factors: the
gene and the type of biological sample (healthy or pathological tissue, wild-type or modified cell ...).

At present, teaching designs play a significant part in biological and biomedical research, particularly
in the assessment of big omics information. Application issues are creating new difficulties:

• Large omics information collections can be highly unbalanced owing to the trouble of
acquiring sufficient beneficial samples of these unusual mutations or illnesses.
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CHAPTER 2. DEFINITIONS

• Many learning techniques are black boxes, which is enough for social applications. However,
in biological or biomedical fields, knowledge of the molecular mechanisms underlying any
disease or biological study is necessary to deepen our understanding.

• The genotype-phenotype association is a white index captured in conventional massive data
studies but identifying causality rather than association would be more useful for physicians
or biologists, as it can be used to determine an experimental target as a topic for future
research.

Therefore, in order to simultaneously improve phenotypic discrimination and genotype interpretability
for complex diseases, it is necessary to design and implement new learning technologies in order to
integrate prior knowledge from gene ontology for example. The idea is to develop new theories and
methods based on deep neural networks to find a compromise between precision and interpretability
of learning in biomedical and biological fields.

Figure 2.3: Deep Learning in Bioinformatics

The purpose of the statistical analysis is then to extract relevant information concerning the effect
of various factors on the functional state of the cell.

The goal is to learn from experience and create a hierarchy of concepts that helps to understand
something complex.
For example, an image can be understood through different concepts can be shapes or colors and
in our case it’s about omics data. The analysis and understanding of an input will be done through
the prioritization of these concepts.

We will not cover here everything about deep learning, since it is a very vast field. But, in
order to understand the topic of the dissertation and the course of the internship, we will discuss
some important notions about neurons.

A formal neuron is a mathematical model that calculates an output from input data. The output
corresponds to the dot product between its input vector x and a vector of weight w.
Following this, we add a bias b to this product. The result of this calculation will then go through
an activation function f that will determine its output. It is said to be activated when its output
value exceeds a threshold j.

The formula for calculating its output value is:

y = f(x.w + b) (2.1)
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CHAPTER 2. DEFINITIONS

The f most currently represented activation function in neural networks is the ReLu (Rectified
Linear Unit) function. We can write it this way:

f = max(0, x) (2.2)

Then, the output value of the neuron becomes:

y = max(0, x.w + b) (2.3)

The neurons are then layered together to form a network.
This allows to learn more complex functions.
So we have an MLP (MultiLayer Perceptron), with an input layer, for the variables of the problem,
a hidden layer, whose neurons are connected to all the previous ones, and then an output layer
with a neuron for each class to predict.

In a context of supervised learning, prediction consists of giving a label to an example. Imagine that
we have our function G which must classify images. This function represents the classification of
the different data. Our neural network, which approximates G, must have roughly similar results.
To make a prediction, our neural network propagates information from the input layer (pixels of
the image), through the hidden layers, to our output layer (also called logit layer). The prediction
will correspond to the neuron of the output layer having the highest value. This is called the
forward.

A model or classifier is a network of neurons that has been trained. That means a weight and
a bias were calculated for each neuron. This is done through the gradient. It is calculated after
a prediction and we differentiate between the values of neurons corresponding to the predicted
class and the real class. This difference is used during the learning phase to retro-propagate the
mistake and calculate new weights and bias for our neurons. In a sense, the gradient represents
the direction (it is also obtained following a derivative) to be taken for our prediction to be correct,
it’s called backpropagation [14].

We also use a method to improve the strength of the neural network, the batch normalization
[15] normalizes the performance of the past input section by subtracting the batch average and
separating it by the batch normal deviation.

Consequently, batch normalization adds two trainable parameters to each layer, so the normalized
output is multiplied by a “standard deviation” parameter (gamma) and add a “mean” parameter
(beta). In other words, batch normalization lets SGD do the denormalization by changing only
these two weights for each activation, instead of losing the stability of the network by changing
all the weights.

We also use the famous Dropout [16] technique in order to improve the robustness of the network
against the future example not known in advance by the network. Dropout is a technique that is
intended to prevent overfitting on training data by dropping units in a neural network. In practice,
neurons are either dropped with probability p or kept with probability 1-p.

Moreover, even if we are in the case of a classification problem with two classes and we can
also talk about binary classification, we do not use sigmoid activation function because for the
future techniques of retro-propagation we must dissociate between the neurons predicting the
healthy class and the sick class. So, we have in last layer, two neurons and our activation function
is softmax.
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Here is the formula of softmax:

softmax(xi) = exp(xi)∑
j exp(xj)

(2.4)

The Softmax function, or normalized exponential function, is a generalization of the sigmoid
function. In our case and even often, we have an unbalanced dataset because there are about
66% of patients being classified as cancerous and the rest healthy.
There is a multitude of techniques to counter this problem like the change of metric and also the
oversampling or under sampling techniques but in our case, we will simply take into account the
coefficient of each class when learning with Keras [17].

12



Chapter 3

State of the art

In this section, the goal is to explain why an example is part of a certain concept (class). For that,
one is interested in the variables which contributed to take a decision.
This takes the form of a relevance score Ri that is attributed to the neuron i. We are talking
about relevant methods. If | Ri | is relatively high, so the variable is decisive. If Ri > 0 then the
neuron goes in the direction of the prediction. That is, it validates the predicted class.

On the other hand, if Ri < 0, then the neuron goes against the prediction. In the case of
transcriptomic data, this could mean that the activation of certain genes goes against a disease
but this is still a hypothesis. For the assignment of relevance score to the different neurons, there
are two main families of algorithms specific to deep learning. These are the disturbances method
and gradient-based methods. The second one is sometimes also called Backpropagation-based
methods.

3.1 Interpretation Techniques

3.1.1 Prediction Interpretation Techniques
Visualisation: Another way to overcome the problem of the black box is visualization. This has
been studied in different articles, in different ways. The first one is called t-Distributed Stochastic
Neighbor Embedding (t-SNE) [18]. The principle is like PCA (Principal Component Analysis). The
aim is to visualize, most often in two dimensions, dataset of very large dimensions. Even if it is not
really a mean for interpretation, it can help us to read the model learned. One last visualization
method is to generate an abstract image from an example [19]. This helps to understand the
abstract concept learned and predicted by the network. In this article, the authors have even
demonstrated the possibility of regenerating the original image from its abstraction.

by example:
Even if it is not directly interpreting the data, this method of explanation derived from human

reasoning which also works sometimes by analogy. So, the network will use examples that it has
already learned to explain a concept that may be new to him. That’s what has been made by [20].
In addition, they also kept the learning data from the network. So, they made the connection
between the hidden neuron activations for the examples and for the prediction. This link was made
via the k nearest neighbors algorithm. [21] also started from the same principle, but concerning
text analysis. So, for a learned word, the model puts it in link with "close" words and it corresponds
to find synonyms.

Explanatory text: This method assumes that human beings often justify or explain their decisions
with text [22]. Indeed, they first led a model based on reinforcement learning to be able to play a
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video game (Mario Bros).
Following this, they constructed another model that will be used to make the link between the
state of the previous model and a textual explanation. Additionally, [23] who have also explored
this possibility. In this article, we are talking about a system of recommendations:
For example, in an e-commerce website, a product may be recommended for a customer. The idea
of this paper, is to predict a grade to a recommendation system, usually assigned by the client.
Except that this prediction will be explained textually by another model. This is to improve the
model in charge of the recommendations.

Local explanations: The last approach is also quite popular because it does not try to make the
connection between the network and all the concepts that it has been able to learn. In general,
these are inexpensive techniques in terms of calculation. Indeed, we try to look "locally" the choice
of the model. You can do that, through the input data, the activations, the gradient, and so on.
This is the case of [24], who set up the concept of Saliency Map. This consists in multiplying the
gradient of our output which corresponds to the real class, with the input data.

This allows to highlight the inputs that greatly influence the activation of output neurons. They
therefore have a huge impact during a change. The following methods are part of so-called local
explanations and they all have in common the fact of assigning a relevance score for neurons. The
higher the score, the more important the neuron has been in decision making. We will first talk
about the LIME (Local Interpretable Model-Agnostic Explanations) method [25] and it is popular
because it applies to any type of model such as Random Forest or SVM.

Thus, it does not rely on the architecture of our network. The overall idea of LIME is first
to generate examples that will approximate our input data. This consists of a set of disturbances
of our entry because this will make it possible to calculate a more "transparent" model that will
approximate another more complex model. Finally, LIME will assign a relevance score to the input
variables so this method is also useful for detecting confused data that will "noisy" our learning
data.
LIME is popular because it applies to any type of model.

However, for the purposes of this internship, we also wanted to have an interpretation of the
network and of the hidden neurons. For this, there are other methods that always calculate
relevance scores, but for any neuron. They are therefore specific to deep learning, sometimes
specific to one type of architecture, but also very fast. We always consider them as local
interpretations because they consider our input variables.
These methods are: Simple Gradient Method [26], LRP [2], DeepLIFT [26], Integrated Gradients
[27] and Guided Backpropagation [28]. These methods are part of Gradient-Based Methods.
These methods can also be compared to perturbation methods [29], [30]. This involves disturbing
the variables to find out which ones are important. These last two sub-families of methods
Gradient-based methods and Perturbations methods will be presented in detail in the following
chapter.

3.1.2 Model Interpretation Techniques
Link between the input layer and the hidden layers: First, [31] have developed a method to
reduce the black boxes aspect of neural networks. For this, the authors have proposed one of the
first methods to understand what neurons hidden layers have learned.
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Next, [29] took over this concept to adapt it to convolutional networks. This method is called
deconvolutional networks. The goal is to link the input data with the neurons of the upper layers.
This allowed them to improve the accuracy of their network but also to see that the depth of a
model is important for network performance. Interpretation is therefore also a tool to improve our
network.
[19], [32] and [33] have further explored this subject and discovered that the deeper the layers,
the more they learned abstract concepts.

Prototype representing an abstract concept: Another approach is to generate an image that
would be a prototype of an abstract concept or class. This is the case of [24] who developed a
method called Activation-Maximization. The goal is to generate a prototype that will maximize
the value of the output neuron. In this way, the "preferred" network image is obtained for a given
concept and [33] did the same thing but for each neuron. So, a realistic image can be generated
to understand the role of a neuron.

Still in the interpretation, [34] have started from the principle of disturbing some input data
through the descent of the gradient to improve the activation of certain selected neurons in the
hidden layers. Disturbed inputs can highlight what has been learned.
This method is difficult to classify because in a certain way it makes it possible to interpret a
model and not a prediction. However, this interpretation follows a prediction. It is also classified
among the model functionality. Following this, an input image is disturbed after a prediction.
This perturbation reveals what the model has learned and the neurons whose activation has been
improved. We can thus observe the different concepts learned, which neurons look for in this
image.

Learning-oriented interpretation of learning: Another possibility of interpretation is to take
an interest in the learning data [35]. This method consists in altering the basic data to understand
their importance in learning the model and then in its decision-making.
It also detects examples that can mislead our model. Similarly, it allows to create adversarial
example. These are modified data but whose changes are imperceptible by humans eye. However,
the predictions are still strongly impacted.

Approximate our neural network by a transparent model: We will be approximating our
neural network by a transparent or more interpretable model and it is the case of a linear model
or a decision tree.
This has been done in [36], a decision tree is extracted from a neural network to understand what
it has learned and it also allows you to extract rules that are used to decide.

3.2 Disturbance method
Disturbance methods were applied by [29]. They consist in directly calculating a relevance score
for each variable, by deleting, hiding or modifying the input data.
Following this, we redo a prediction (a forward), in order to calculate the difference with the true
prediction. The objective is to measure the impact of a variable on the prediction. More formally,
we define x as an example and xi the ith variable of x. Thus, Sc(x) will be the output value after
the forward, for our example x, so we obtain the following equation:

Ri = Sc(x)− Sc(x[xi=0]) (3.1)
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One of the problems with this method is the computation time needed for a single example.
Indeed, the time increase according to the number of variables. For example, for a single image it
may take several hours. In order to decrease this time, it is possible to hide several variables at a
time. It is applicable in the field of images, because a pixel is directly related to its neighbors.

We cannot do likewise on transcriptomic data because we have not yet determined link between
the different variables. These disturbance methods are called Occlusion − n, where n is the
number of variables corrupted by iteration.

3.3 Gradient based method
Gradient-based methods are also part of the relevant methods. They also allow to assign a
relevance score Ri to a neuron.
This is undoubtedly one of the most popular types of interpretive methods. Indeed, they are specific
to learning methods and allow to rely on the architecture of the model (layers and neurons), and
its instantiation (weight and bias). They rely on the retro-propagation of the value of the output
neuron.
Thus, the interpretation of a single example often takes less than a minute. In order to present
them, we will try to see them in a coherent order.

3.3.1 Activation-Maximization
In this section, we will explain the Activation-Maximization method. All information concerning
this algorithm is presented in the article of [2]. The neural network will take a given x input
and will then propagate via the different layers and activations of the information neurons to the
output layer. Following this, we can calculate the probability that x belongs to the class wc. This
probability is written P (wc|x).

Figure 3.1: Example of a neural network with a probabilistic vision [37]

The goal of the Activation-Maximization method is to maximize the activation of the output
neuron of the predicted class. This will increase its probability. The example created following
this maximization will be the prototype of an abstract concept. Formally, we consider data x that
is associated with a set of classes (wc)c. We still have our probability P (wc|x). The prototype x∗
will be calculated by optimizing the following equation:

max
x

log p(wc|x)− λ‖v‖2 (3.2)

In the first part of the equation, we find our probability. The term right is a regularization term
[38], called l2-norm regularization. This is usually a term that helps to avoid overfiting. In this
context, it makes it possible to favor inputs close to the origin, even if the final prototype is grayed
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out (in the context of image analysis). It is possible to improve the obtained prototype by replacing
the regularization term by an expert p(x). It is a model of learning and the equation becomes:

max
x

log p(wc|x) + log p(x) (3.3)

This method will make it possible to obtain strong class response (the value of the neurons of
the output layer) and create a prototype much closer to the data. The problem of the expert is
sometimes that it is difficult to make it accurate. In this case, we go through a so-called generative
model. The principle is to generate examples from a simple distribution. These examples will then
be linked to our data via a decoding function and it corresponds to a prediction model. It sounds
complicated, but in reality, it corresponds to the GAN (Generative Adversarial Network) [39].
Indeed, the principle of GAN is to generate data that seems real. For this, we have a model that
generates examples and another that validates or invalidates the likelihood of the example. The
first model is driven until it can generate plausible data. It’s a bit like if the created data passed
the Turing test. To illustrate the concept of Activation-Maximization, we can use the following
figure:

Figure 3.2: Different architectures for the interpretation method Activation-Maximization [37]

In Figure 3.2, we can see the three types of architectures possible for our method of interpretation.
They have been applied to MNIST data. These are images of handwritten figures and there are ten
classes, from 0 to 9. On the left, you can see the architectures, and on the right the prototypes
created from them. These are images of 28 pixels by 28 pixels so 784 input variables. The
DNN (deep neural network) in grey is the network that we want to interpret. So, we see that the
prototypes obtained by simple activation maximization are a little fuzzy, unlike other architectures.
The last two have similar results. It must be understood that prototypes are created images that
represent an abstract concept, a class, which is here a number. This idea of prototype is here
an overall interpretation of the different concepts that the model has learned. Then, when the
concept is too abstract it is possible that it makes no sense. It would be more interesting at that
time to make local interpretations. This amounts to generating different prototypes for the same
concept.
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3.3.2 Gradients × Inputs
The Gradients × Inputs method was introduced by [24]. In order to explain clearly what is going
on, we will make a formal definition. We take an example x, which can be an image or omics
data.
We have the score Sc(x) which corresponds to the value of the output neuron. If we were dealing
with a linear model, we could write the following equation:

Sc(x) = wTc x+ bc (3.4)

wc and bc are the weights and bias of the model, respectively. In this case, the weights could
represent the importance corresponding to each element of x. However, the linearity of the model
is "broken" because of the different activations functions which apply to the output of neurons.
To approximate our nonlinear model, we use a series of Taylor. Indeed, we use the terms first
order:

Sc(x) ≈ wTx+ b (3.5)

where

w = ∂Sc
∂x

(3.6)

w is our gradient.

3.3.3 Simple Taylor Decomposition
The Simple Taylor Decomposition method was introduced in [40]. It is also explained by [2]. This
takes a bit of the principle of the previous method. We have our non-linear model that corresponds
to a function f .
The idea is to break down this function into a sum of relevance scores. These scores are obtained
following the identification of the terms of a series of Taylor of first order at a root point x0, such
that f(x0) = 0. This root removes the information in the input layer that makes f(x) positive.
Now, we have our example from which we removed the reasons that would be responsible for our
prediction. We will call this root point, a reference. The Taylor series allows you to rewrite the
function as follows:

f(x) =
d∑
i=1

Ri(x) +O(xxT ) (3.7)

where the scores are expressed as follows:

Ri(x) = ∂f

∂xi

∣∣∣
x=x̄
· (xi − x′i) (3.8)

Ri(x) are first order terms and O(xxT ) are higher order terms. This method does not use
back-propagation. Finally, a variant of applying this layer by layer and which is called Deep Taylor
Decomposition belongs to this family of methods.

3.3.4 Layerwise Relevance Propagation
Layerwise Relevance Propagation (LRP) [37] is an algorithm that consists in retro-propagating a
relevance score of a neuron from the output layer to the input layer.
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Figure 3.3: Schematic of the LRP procedure [37]

Figure 3.3 schematizes the LRP procedure quite simply. First there is the propagation phase
(forward). This one consists in making the prediction starting from the variables xi. We get the
output f(x). This will be our relevance score. This is the one we are going to retro-propagate.
This is the relevant spread as shown in the diagram and LRP respects a principle of conservation.
Indeed, the sum of the relevance of the neurons of the same layer is equal to the sum of the
relevance of the other layers.

We have just seen the LRP principle, but we have not defined how to retro-propagate a relevance
score of a neuron to previous neurons. Since the goal is to highlight the relevant neurons, we
should not split this score evenly.
We then establish rules of propagations. As seen previously, we can use the Simple Taylor
Decomposition method, this will become now the Deep Taylor Decomposition.
However, much more intuitive rules exist: we divide this score according to the activation of the
previous neuron and its associated weight. This neuron will be more rewarded if it participates
more than the other neurons of its layer. More formally, take two layers j and k. We can define
the following propagation rule:

Rj =
∑
k

(α
ajw

+
jk∑

j ajw
+
jk

− β
ajw

−
jk∑

j ajw
−
jk

) (3.9)

with Rj the total relevance of the j layer, a and w are the activations and weights, respectively.
()+ and ()− are the positive and negative weights between the j and k layers. This distinction
makes it possible to highlight the neurons that go in the direction of prediction and those that go
against it. You should also know that α − β = 1 and β ≥ 0. We can add terms to avoid any
division by 0. This rule is called αβ − rule. We modify α and β according to the application
domain. Some variants are suitable for the input layer and others for the hidden layers. The
notation LRP −αnβm is used when assigning the values n and m respectively to α and β. It has
been proved that LRP −α1β0 corresponds to the Deep Taylor Decomposition method. For more
information on the theory as on the implementation, one can refer to the document of [2].
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3.3.5 DeepLIFT
DeepLIFT is a method introduced in the article [26]. It was thought after highlighting some
defects of disturbance methods, but also that based solely on the gradient.

Figure 3.4: Example of failure of disturbance or gradient-based methods [26]

In Figure 3.4, we have an example where previously seen methods fail. Indeed, in the context of
an Occlusion − 1 perturbation, no change is produced and it is impossible to know which of i1
or i2 has contributed the most. Similarly, the gradient will be 0 when i1 + i2 > 1.

To solve this problem, DeepLIFT will do a mix the disturbance and LRP methods. The main
idea is to calculate the difference between our example and a reference. Note t the activation
of our example, and t0 that our reference. We calculate δt which is the difference between
the example and the reference: δt = t − t0. Following this, we take the principle of LRP and
retro-propagate this difference to previous layers. This is done via propagation rules.

After that, because of the number of rules specific to the types of layers, it is better to refer
to the [26] document. The choice of the reference can be complicated in some cases. In that of
the MNIST data, a white image is used. So, the difference between the example and the reference,
will allow to focus only on the number. For text analysis, it will be an empty string and for omics
data it is not so simple. The choice of this reference is decisive for the final interpretation. In this
way, DeepLIFT solves the problems of discontinuities encountered with the gradient methods.

Figure 3.5: Example of gradient discontinuity [26]

In Figure 3.5, we take the activation of a neuron with a ReLU activation function, with a bias of
-10. That is the output of our neuron is y = max(0, x − 10). It is only when y ≥ 0 that the
relevance score attributed to the input neurons will be positive. We note that the relevance score
will be discontinuous for the gradient, gradient × inputs, unlike the difference from reference,
represented by the red arrow. As you may have noticed, this method is classified in the category
of gradient-based methods whereas it is seen as an improvement.
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However, in the literature DeepLIFT is considered to use what is called a "discrete" gradient
[27]. Moreover, to avoid complicating the field of interpretation more than it already is, I chose
not to create another sub-category among the relevant methods.

3.3.6 Integrated Gradients
The Integrated Gradients method [27] was created via an axiomatic approach. The designers of
this method first defined the axioms that must be respected. To understand the different axioms,
it should be noted that Integrated Gradients use just like DeepLIFT a reference.

The first axiom is called sensitivity. It consists in assigning non-zero relevance when an example
and its reference differ in one variable, and the prediction is different. This has been highlighted
in the article on DeepLIFT [26] and explained in Figure 3.4.
The second axiom is the invariance implementation. Formally, two networks are functionally
identical if for each input we obtain the same output, even if they do not have the same architecture.
It must be the same for the relevance attribution method. For two functionally identical networks
then one must obtain the same interpretation.

Integrated Gradients therefore respects these two axioms. Now let’s define how this algorithm
works. We have x our example and x0 our reference. The reference is sometimes called baseline
and the model is represented by a function F . For calculate the i-th dimension of x (a variable),
we apply the following formula:

IntegratedGradsi(x) = (xi − x′i)×
∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα (3.10)

Intuitively, Integrated Gradients is the sum (via the integral) of gradients for all the points that
belong to the "path" between the x example and its x′ reference. Defined as this, the method
is not necessarily very understandable, but especially it is very time consuming. There is the
approximation of Riemman and we sum the gradients at regular intervals (m step).
We find here our sum of gradients for all possible paths because of that, it is moreover for this
reason that we also speak of path methods.

3.3.7 Guided Backpropagation
Guided Backpropagation is not an improvement of other methods and this algorithm was introduced
briefly by [28]. This approach is a gradient-based visualization technique designed to highlight what
parts of the input contribute to a given neuron in a neural network. The method back propagates
the gradient with relation to the input image while masking negative values. This results in
only positive gradients being conserved. The advantage of retaining only positive gradients is to
prevent a backward flow of negative signals corresponding to neurons which inhibit activation of
the higher-level neuron.

As opposed to usual backpropagation, this can act as an additional guidance signal when traversing
the network. The output of guided backpropagation is an RGB image of the same dimensions
as the input image. This method works for visualizing neurons in convolutional as well as fully
connected layers. It is explained via the following schema:
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Figure 3.6: Diagram of Guided Backpropagation [28]

In Figure 3.6, we can see that the algorithm is inspired by the techniques of back-propagation and
deconvnet [29]. The only thing to understand is that the allocation of the relevance score fllows
that reasoning: If the relevance of the superior neuron is positive and the activation of the current
neuron is also positive, then the relevance of the current neuron is equal to that of the higher
neuron.
It’s finally a simplistic method and from the experimentation that we have done, it comes down
in the majority of cases to do:

Ri = max(0, gradient× input(xi)) (3.11)

We call this method guided backpropagation because it adds an additional guidance signal from
the higher layers to usual backpropagation. This prevents backward flow of negative gradients,
corresponding to the neurons which decrease the activation of the higher layer unit we aim to
visualize.

3.4 Comparison of interpretation methods
In this section we will first summarize the different methods. It must be understood that there is
not one better than the other, in some cases, we will favour a method.

Methods Reference Sensitivity Implementation Invariance Fragile
Occlusion-1 No No Yes No
Gradient x inputs No No Yes Yes
LRP No No No Yes
DeepLIFT Yes Yes No Yes
Integrated Gradients Yes Yes Yes Yes
Guided Backpropagation No No Yes Yes

The different criteria come from the article by [27]. There are some errors, as it is said that LRP
uses a reference and which is not the case. So LRP cannot respect the sensitivity axiom. We have
a proof that LRP returns to the same thing as gradient × inputs [26].
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Methods Architectures #Forward-Backward
Occlusion-1 All n (number of variables)
Gradient x inputs All 1
LRP All 1
DeepLIFT All 1
Integrated Gradients All m steps (generally 50)
Guided Backpropagation ReLU Networks 1

The proof is based on a single rule of propagation, while there is almost a dozen. The constitution
of a synthesis of the different methods quickly becomes tedious. The fragility of interpretation is
discussed in the article by [41]. This fragility is defined by a different interpretation for a disturbed
example whose disturbance is invisible to the naked eye. This problem is put forward as a security
breach and especially in image analysis. Disturbance methods are not affected by this problem
because of their nature.

Figure 3.7: Comparison of the correlations between the sum of the attributions of relevance and
the variation of the target class (delta output), applied on images [42]

In Figure 3.7, the different relevance score assignment methods have been applied on images
(MNIST, IMDB, CIFAR10 and ImageNet). They have been tested on different architectures:
MLP, CNN (convolutional neural network) and LSTM (long short-term memory). The image
compares the correlations between each method.
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InOmicNet

4.1 Introduction of the method
InOmicNet is a shortcut for "Interpretable Omic Network", the purpose of this memoir is to
develop a neural network able to learn and evolve the weights of the following layers by biological
information introduced with a knowledge base outside.

The first step of the method will therefore consist of extracting the knowledge from the set
of probes, we must recover the biological functions associated with these probes. We will use the
available base package Bioconductor [43] that will allow us to recover first biological functions.
We will also note the loss of information related to the search for biological functions and also
according to the current gene ontology.
Then we will define a directed acyclic graph from this one and evaluate the incoming and outgoing
nodes as well as the number of functions at each depth of the graph in order to get an idea about
the number of hidden layers to use.

After defining the number of hidden layers for the neural network, we will introduce a custom
cost function. This graph will be put in the form of an adjacency matrix that will serve both the
interpretation of the network a priori but also as a constraint to the cost function. This custom
cost function will consider the ascendancy of the biological functions in order to better learn from
this external information, and we will also implement a callback monitoring system that will allow
the evolution of weights and losses according to the l1-norm and l2-norm.

It is important to note that the technique allowing interpretation is included in InOmicNet. As
discussed there [44], most recent work on interpretability of complex learning models has focused
on estimating a a posteriori explanation for previously trained models around specific predictions.
Self-explaining models where interpretability plays a key role already during learning have received
much less attention. To give a correct value, we will carry out a verification of the evolution of
the penalties in order to see if the network considers its information with also a grid search of the
regularizing coefficient α.

For the interpretability part, we will use the LRP and with the assistance of a simple dense
network with the predefined layer number, we will copy the weights of this one in order to use the
package and check if the scores in a first follow a Gaussian distribution.
And finally, a series of several techniques such as taking the best score per layer for each prediction
and look at what biological functions are and other ideas that we will develop later.
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4.2 Gene Ontology
Ontologies as they are used in computer science (because the concept is philosophical above all)
were first developed for artificial intelligence. Their purpose is to describe what exists and the
formal definition is quite complex.

In its definition, an ontology is a structured set of terms and concepts of a domain, specifying
the relationships between these terms and their properties. Each term in an ontology must have
a definition to be sure of the meaning associated with it. An ontology has a hierarchical structure
and the set of terms is anchored by a high-level term, the root.

For example, the ontology that must be the best known in biology is Gene Ontology. It focuses
on describing what genes and their products are with 3 different namespaces (3 subparts of the
ontology): molecular functions, cellular compartments and biological processes.

It is widely used for the annotation of genomes in order to harmonize the characteristics associated
with genes whatever the species. Then, again thanks to this vocabulary, when one needs to search
for a gene or function, it suffices to use the corresponding GO Term. Gene Ontology is used by
many software and databases that need concepts on genes and it makes it easier for users to use
them because they only need to know this reference.

Figure 4.1: Illustration of the different part of the gene ontology.

The goal of the Consortium is to produce a structured, precisely defined, common, controlled
vocabulary for describing the roles of genes and gene products in any organisme. GO terms are
connected into nodes of a network, thus the connections between its parents and children are
known and form what are technically described as directed acyclic graphs. One reason for this is
that state of biological knowledge of what genes and proteins do is very incomplete and changing
rapidly.
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We need to be able to organize, describe, query and visualize biological knowledge at vastly
different stages of completeness. Any system must be flexible and tolerant of this constantly
changing level of knowledge and allow updates on a continuing basis. The vagueness of the
word feature when introduced to genes or proteins was identified as a specific issue, as the word
commonly used to define biochemical operations, biological functions and cellular structure.

4.2.1 Extraction of knowledge
Our work is to be used in medicine and therefore must be precise. We will argue on the next chapter
that despite the loss of information, in the end we have enough to carry out the methodology.

I basically worked on Jupyter Notebook (Jupyter is a web application used to program in more
than 40 programming languages and it is an evolution of the IPython project and, it allows you
to make notebooks) using the famous programming language used in the field of data science
domain: Python. The worry is that the bioinformatician prelims language is R, so I used rpy2
to make a binding between R and Python and allow the efficient and fast use of other packages
specific to Python. To retrieve data from the Affymetrix HG-U133Plus2 device, I had to use the
hgu133plus2.db package available in the Biocmanager library.

From this starting point, the library allows us to extract the functions GO, ENTREZID, ENZYME
and all the PROTEINS associate with a probe. So we have 54.675 probes identifier at the start,
but when we want to find the genes associated with the probe identifier, we realize that 18,89%
are lost and that finally according to the [45], the 23.437 genes are not all recognized because
there are 1.435 missing genes (a loss of 6,12%).

Then I coded a routine to retrieve all GO functions associated with these probes as inputs,
returning 8.198.615 functions and when we only filter the biological functions (BP), we have
5.474.170 functions. With these biological functions, we can associated 36.587 unique probes.
This number is interesting because we retrieve 16.037 GO biological process functions which will
be the size of our future adjacency matrix at the beginning. The loss of genes information is about
27,34% because we can fetch only 17.027.

We download the gene ontology directed acyclic graph from OBOLibrary official website, we will
use two Obonet and Networkx libraries to manipulate the obo file as well as the directed acyclic
graph. There is (at the time of writing this memoir) 45.006 nodes (GO function) with 92.809 arcs.
We retrieve the gene ontology functions extracted from the library previously (16.037) and then
perform a simple operation: we subtract the nodes not included in our list of GOID GO base graph.

Then there is another problem, the graph of GO functions is updated regularly and therefore
the information retrieved by the package hgu133plus2.db is obsolete, so 26 GO functions are not
known and we remove them from the graph. In addition, it was necessary to add two arcs.

1 list_go = file_goall . GOALL . unique ()
2 list_nodes_useless = list( graph . nodes - list_go )
3 list_go_old = [x for x in list_go if x not in graph . nodes ]
4 list_go_uptaded = [x for x in list_go if x not in list_go_old ]
5 graph . remove_nodes_from ( list_nodes_useless )
6 graph . remove_nodes_from ( list_go_old )
7 graph . add_edge (" GO :0099180" ," GO :0071577")
8 graph . add_edge (" GO :0036520" ," GO :0007267")

Finally, we have a directed acyclic graph containing 16.011 nodes with 37.912 arcs, an incoming
and outgoing average of 2,3679. From this moment on, we retrieve several informations, for
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example the fact that we have a loss of 33,08% of incoming probes. Since the number of input
variables is very important despite this loss of information, we have decided to ignore future probes
that we will not be able to interpret. Here is a summary table including the depth of the graph
relative to the root GO:0008150 with is associated to term BP (biological process).

d◦_ ¯mean_in d◦_ ¯mean_out ¯mean_probes nb_envidence_associated nb_go Depth
0.0 29.0 36587.000000 114569 1 0

1.172414 15.827586 1248.448276 556058 29 1
2.054830 7.563969 94.477807 1039316 383 2
2.582438 3.664643 16.754787 1396427 2141 3
2.610091 2.550564 7.824297 1270356 4519 4
2.448291 1.851227 7.399430 653485 4564 5
2.049626 1.705396 11.908625 317339 2539 6
1.879163 1.381875 14.103021 91318 1291 7
1.900709 1.115839 22.943262 27050 423 8
1.359223 1.048544 31.883495 6098 103 9
1.055556 0.666667 24.277778 721 18 10

Then we generate two CSV, the first contains for each function GO its associated depth and for
each probe its associated depth in the graph. This first step is used to build an information model
that will be used to build a model of neural networks and to guide learning later.

4.3 Learning constraint
Our model is a self-explaining one where interpretability is built-in architecturally and enforced
through regularization. This learning constraint is useful because, since we add meaning to each
neuron in our network, it is nothing more than an abstract mathematical value, including a weight
and a bias, but a biological function originating initially from the probes.

The distribution of GO functions through the depths of the graph follows a Gaussian distribution,
so we decided to take 5 layers (including 2539, 4564, 4519, 2141, 383 neurons), there are obviously
the 54.675 neurons in inputs and the 2 neurons output.
During implementations, we use custom layers because we implement some constraint learning
with an introduction of a connective matrix and also a custom loss function for learning. During
my internship, there was the release of Tensorflow 2.0 with basic Keras included as well as other
functionality, one should not mix. Tensorflow 2.0 introduced many things like eager execution and
a better use of RTX graphics card due to CUDA 10 which was an occasion to use the new server
with 4x RTX 2080Ti.

Construction of the connection matrix: To render the network interpretable, we use an
adjacency matrix constructed with Networkx (NetworkX [46] is a Python suite for creating,
manipulating, and studying the design, dynamics, and features of complex networks.) containing
for each GO function the ascendancy to the node in the graph.
It will help us during the learning to adapt weight of neurons provided by the gene ontology. In
input, we have the 54.675 probes and from them we build the matrices following:

• 54675x2539

• 2539x4564

• 4564x4519
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• 4519x2141

• 2141x383

• 383x2

As can be seen, there is a big drop between the number of input variables and the first hidden
layer. In the model summary A, it follows that there are about 138 million parameters. Then the
number of GO functions decreases to 383. Number of parameters from the batch normalization
are 56.584.

Custom Loss: We use a custom cost function for each layer of the neural network:

− (x log(p) + (1− y) log(1− p)) + α

λ
∗ ‖Wi ∗Ci‖ (4.1)

α represents the weight of the l2 regularization and λ is the number of layers then we realize the
product of the weight matrix Wi and the connectivity matrix containing the biological information
defined with Ci.

Normally, we use l2-norm only on the weight matrix when we want to train the network to the
classification of cancer cases and the results are around 95% on the validation set.

− (x log(p) + (1− y) log(1− p)) + α

λ
∗ ‖Wi‖ (4.2)

4.4 Monitoring
When learning the model, we want to set up a complete monitoring system that will allow us to
have a visualization of the results in a clear way and it will allow us to have a verification system
in terms of coherence. Let Ci, the connectivity matrix for a i layer then we have two types of
penalties:

• go : penality Ci.

• no_go : penality 1 - Ci, the one used for learning.

We also follow the weight values for each layer by stocking with the l1 norm and the l2 norm.
It was initially chosen not to include the connectivity matrix in the l2 norm but we then chose
to consider because the weight of this one was not very important and moreover it is necessary
to take into account that the matrices are very separate. We could have used the l1-norm which
highlights the sparsity of the matrix ahead, but it does not have any consequences in the end on
the learning and the evolution of the weights of penalties.

‖Wi‖ (4.3)

We perform a custom loss monitoring according to the go or no_go penalty of each i layer:

α

λ
∗ ‖Wi ∗ (1− Ci)‖
| (1− Ci) |

(4.4)

Then the last monitoring according to the l1-norm, l2-norm and cr for cross-entropy.
Then:

− (x log(p) + (1− y) log(1− p)) + α

λ
∗ loss_penality_norm (4.5)
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We retrieve the values at the beginning of each training session and at the end of each epoch, in
order to see later the evolution of the different values that we wish to follow. This system allows
us to validate the methodology and then adjust the formula later. Our methodology must be
rigorous in our case.
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Results

In this section, we will discuss the different results acquired during the various implementations
realized on the InOmicNet network. We will first see the results on the simple classifier and
InOmicNet to see if there is a difference in accuracy or not. Then we will carry out a study on the
regulator coefficient in order to see when and how the network considers the secondary terms of
the loss and also the consequences on the weights of the penalty. Finally, we will make a study
on the different results of the penalties scores of relevance.

5.1 Input data
In the case of learning methods, it goes without saying that the importance of data is primordial.
Indeed, in biological research, the data are a very rare commodity because it is very expensive to
make biological pre-treatments on patients and ethically questionable.
It is indeed necessary to go through a selection of people who are cancerous or not, then to
carry out the administrative procedures for the treatment running tests. Moreover, the length can
vary between several months or several years depending on the cases treated. In our case, they
compiled a human gene expression dataset from approximately 40.000 publicly available Affymetrix
HG-U133Plus2 arrays [45].

The creation of this dataset has required a lot of work, and it remains that it weighs several
gigabytes. After strict quality control and data standardization, the data were quantified in the
expression matrix of 20.000 genes and 28.000 samples. The assessment recognized 1.285 genes
with targeted expression of genes changes in cancer.
Raw Affymetrix HG-U133Plus2 device function information was recognized and accessed from the
ArrayExpress data archive. The initial data set consisted of 40.871 CELs from 69 experiments and
included samples from a variety of normal and non-healthy cell and tissue types as well as cell lines.
Replicated information documents have been recognized by comparing document dimensions and
MD5 checks and deleted.
54.675 probe sets (referring to 23.437 genes) and 27.887 samples, continuously annotated by EFO,
but introduced more data from other databases.
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Figure 5.1: Top 10 Genes from the probes.

In Figure 5.1, I extracted the 10 most frequent genes from the probes in entries for information
for reader informed.

5.2 The Efficiency Of The Classifier.
We will compare the precision of the model according to the function cost to use or the value of
the coefficient of regularization. All the plots are available at the end of this memoir on appendix.
The different exercises of the models are carried out with a learning step of 103 and an epoch
number set to 100. We will use 3 values of α such as 106, 1, 10−5. Taking the case where α is
at 106 5.2, we can see that the precision is locked at 66% and this is due to the ratio of the data
set containing 66% belonging to the cancer class with a conventional l2-norm cost function. The
α is too big and the number of epoch low, so it is normal that the model cannot learn because
the cost function is not balanced.
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Figure 5.2: Accuracy for α = 106 with l2-norm.

Whereas on the contrary with the cost function considering the information of gene ontology, one
reaches 90% E with the validation set. This comparison shows that this cost function is more
adapted to our problem and is better able to model the problem we are confronting. The second
case when α is 1, we have two similar graphs, that is, the precision on the dataset is around 95%
even though we can see some instability in the growth.

Figure 5.3: Accuracy for α = 1 with Custom Loss.

Finally, for a low value α at 10−5, we notice that the progression of the precision is stable and
that the difference of the loss formula has no effect, which is explained by the fact that in both
cases the cost function approximate cross-entropy.
By studying the different graphs of the cross entropy we realize that when the α is large then the
model tends to reduce the other part of the loss formula, it means that the implementation of the
model is correct and that monitoring is a necessary development step to prove the stability of the
model.

32



CHAPTER 5. RESULTS

5.3 Variations Of The Regularization Coefficient.
In this section, we are interested in knowing for which values of α there is a consequent variation.
Since we have very sparse matrices, I made this method using the l1-norm because it looks
attentively at this problem. Then I generate values from 10−7 to 107 in steps of powers of 10. As
can be seen there is a tangent to 10−4, which means that any training smaller than this value is
not good enough, whereas for 10−5 and others the penalty is taken into account because it tends
to zero.

Figure 5.4: l2 NO GO penalties across the different α.

This simply means that when learning the model with the custom cost function, the model considers
the information from the non-ascendancy biological function ontology and it helps reducing the
error and assigning the weights of the neural networks according to the prediction of the network.

5.4 Penalty Weight Curves.
We have two types of penalties as we have already discussed before, and we will see the results of
the feedback following the various trainings.
Every plot described are available at the end of this memoir. We start by studying the GO penalty,
normally the values of these weights should not decrease some values of α and this is confirmed
through the different figures as can be seen.
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Figure 5.5: l2 Penalty GO when α = 106 with Custom Loss.

When the α is 10−5, we see a slight decrease because the second member of the formula is not
well enough considered.
However, for the no_go penalty, we can see that the implementation is correct because when the
α is 1 and 105, we have a curve that tends to 0 very quickly.

Figure 5.6: l2 Penalty NO GO when α = 106 with Custom Loss.

5.5 Relevance scores.
For this part, we will study the results obtained in return for a perturbation technique. Here, there
is two informations like the fact that we use the package innvestigate [47] then for the technique
we use LRP with an ε at 10-7. The distribution of the scores by layers follows a Gaussian, for
each graph we distinguish the class cancer (1) and the healthy class (0).
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Figure 5.7: Distribution of relevance score for layer 1.

It is interesting to see the scores of layers 1 have scores at 10−5 while for layers 6 and 2, we are
around 10−3. For layer 3 and 4, we are around 10−4.
We found that the amount of parameter per layer alone is not sufficient to explain these results.
Regarding the standard deviation of the distribution by layer and by classes, several are distinguished.
For layer 1, the so-called normal class seems to vary more than the sick class and the same reasoning
for layer 2, there is a slight greater variation. Then for layer 3, we see that there is clearly a larger
standard deviation, scores for the normal predicted class and the same for layer 4.
For layer 5, the opposite happens, the sick class has a bigger variation whereas the layer 6, has a
bigger defeat for class 0.
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Biological Interpretation

6.1 Top 10 biological information by layers
In this section, we get the top 10 frequencies when the network predicts cancer for each layer.
The goal is to find out the presence of biological functions related to cancer. This will tell us if
the network globally makes predictions of cancer cases on functions well related to our problem.

For the input layer, we have the probe 210729_at which stands out for neuropeptide Y receptor
Y2) and it is a member of the neuropeptide Y receptor family of G-protein coupled receptors.
Neuropeptide Y (NPY) was first identified from porcine brain in 1982 [48], and plays its biological
functions in humans through NPY receptors (Y1, Y2, Y4 and Y5).
NPY receptors are known to mediate various physiological functions and are involved in multiple
human diseases in most human diseases, such as obesity, hypertension, epilepsy and metabolic
disorders. This review [49] summarizes the current knowledge on the expression incidence and
density of NPY receptors in various cancers, the selective ligands for different NPY receptors
subtype and their application in cancer diagnosis and treatment.

For layer 2, the function GO:1905271 is called the proton-transporting ATP synthase activity.
As we do some research [50], we can see that they talk about how V-ATPase dysregulation
contributes to cancer growth, metastasis, invasion and proliferation with the potential link between
V-ATPase and the development of drug resistance.

For layer 3, we have in first place the function GO:0071679 corresponding to commissural neuron
axon guidance.
We found one paper [51], who said that recently they found several axon guidance genes, including
Netrin (Net) and Deleted in Colorectal Cancer (DCC), have been implicated in human cancers.
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Figure 6.1: Top 10 GO functions on Layer 1.

For layer 4, GO:0003404 is optic vesicle morphogenesis and it is about the developmental process
pertaining to the formation and shaping of the optic vesicle. This process begins with the specific
processes that contribute to the appearance of the vesicle and ends when the vesicle has evaginated.
The optic vesicle is the evagination of neurectoderm that precedes the formation of the optic cup.
We can’t rely that directly to cancer.

Next for the layer 5, the biological function that has the greatest frequency is GO:0010259
and it is associated with the name of multicellular organism aging and its description is an aging
process that has as a participant in a whole multicellular organism.
It includes loss of functions, as well as disease, homeostasis, and fertility, as well as wear and tear.
Multicellular organisms aging includes processes like cellular senescence and organ senescence but
is more inclusive.
In this paper [52], it is mentioned that the diverse cell types are required for multicellularity, but
also created liabilities in the form of points of vulnerability that when mutated or dysregulated
facilitate the development of cancer.

Finally, for the layer 6, the biological function GO:0051606 is associated with the stimulus
detection action and the series of events in which a stimulus is received by a cell or organism
and converted into a molecular signal and its definition is the series of events in which a stimulus
is received by a cell or organism and converted into a molecular signal.
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6.2 Biological functions used for prediction

6.2.1 Best average neurons
We carry out a new analysis with innvestigate using predicted cancer cases, we seek to know
which are on average the best neurons that have the highest score in absolute value. At the end of
this reasoning we have this feedback: 220842_at, GO:0071898, GO:0048469, GO:1903925,
GO:1904019, GO:0014821.

For the probe, the official name is AHI1 and it means Abelson Helper Integration Site 1. This
gene is apparently required for both cerebellar and cortical development in humans. It mutation
causes specific forms of Joubert syndrome-related disorders [53]. Alterations in Wnt signalling
have long been linked to numerous cancer types, including breast, prostate, lung and colorectal.

For the first hidden layer, there is GO:0071898 corresponding to any process that modulates
the frequency of estrogen receptor binding. The main pathology related to a malfunction of
estrogen and its receptors is hormone-dependent breast cancer. Nearly 60% of breast cancer
tumours initially have estrogen-dependent growth.

Then we have the second hidden layer mainly associated with the biological function GO:0048469,
it is associated with cell maturation corresponding to a developmental process, independent of
morphogenetic (shape) changes, that is required for a cell to reach its fully functional state.
A concern for cell differentiation may be involved in the development of cancer.

For the following biological function GO:1903925, it represents any process that results in a
change of a cell or an organism (in terms of movement, secretion, enzyme production, gene
expression, etc.) as a result of a bisphenol A stimulus. There is some research about his link with
cancer [54] where they say it is dangerous for the health [55]. Bisphenol A (BPA) is present in
many commonly used products. It is one of the constituents of rigid plastics such as polycarbonate.
The ability of BPA to mimic estrogen is well documented.

After that we have, the biological function corresponding to epithelial cell apoptotic process
(GO:1904019). An epitheliocyte is an epithelial cell grown in vitro and apoptosis is a complex,
tightly regulated and I found one paper related with cancer and this biological function [56].

Finally, the function GO:0014821 determines a process in which force is generated within a
smooth muscle tissue, resulting in a change in muscle geometry.
It is interesting to note that for the last layer, we are facing a biological function related to the
muscle. Here we can maybe see the intuition behind the neural networks to which we associate
the last layer the concrete concepts related to our problem. Just as an image representing a cat
will contain at its last layer the eyes, mouth, paws of the cat then in our case.
But this hypothesis can also be an overrepresentation because the accumulation of the layers can
also be related to an enrichment of the biomechanical process or else of myosin type genes.

The rest of the charts detailed in this section are available at the end of this document. It is
important to relativize the number of occurrences in relation to the number of total examples of
the validation set. The total number of examples is 5578 in the validation dataset with 3742 cases
of cancer so it is about 67.08%.
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6.2.2 Hypergeometric test on the best probes
Our network contains 23 layers in total (see A) and we are going to realize here several cuts of
our network with each index of layers belonging to a dropout and to carry out an analysis using
LRP. We will select the neuron that had previously the best average (these values change each
time we start a training model).

From here, we have a list of the 5000 best probes per LRP analysis.
We use again the Bioconductor package in order to be able to link PROBEID and ENTREZID and
GOID (being biological functions) useful to the package Gostats. This will allow us to perform the
5 hypergeometric tests to see what are the biological functions associated back to the biological
function of the best average neurons that we took.

GOBPID p-value OddsRatio ExpCount Count
GO:0045190 1.378852e-01 1.58750971 6.8597015 10
GO:0050685 7.158130e-01 0.8146025 3.5940299 3
GO:0042542 0.8608389173 0.75855933 16.574951 13
GO:0072576 9.092333e-01 0.4120025 2.2271252 1
No matching found # # # #

I explicitly chose not to perform the tests with a p-value of 0.05 because some functions were
not present. Indeed, as can be seen from the table above, the p-value is very large and increases
as one goes deeper into the network. The odds ratio (OR) is a statistical measure often used
in epidemiology, expressing the degree of dependence between qualitative random variables. We
note that the odds ratio decreases as we move deeper into the network, which means that the
biological function is less and less likely to appear among the 5000 probes we have selected before.

GOBPID Size Term Position Dropout_Layer
GO:0045190 46 isotype switching 1437 1
GO:0050685 28 positive regulation of mRNA processing 6727 2
GO:0042542 129 response to hydrogen peroxide 8089 3
GO:0072576 16 liver morphogenesis 9363 4
No matching found # # # #

Regarding the biological information associated with the 4 function to which we found a match, we
have in the first-place isotype switching. Isotypic switching is a process that, when a B lymphocyte
matures, changes the isotype of the immunoglobulins produced. This is a change in the heavy
chain of antibodies. This allows the humoral response to be more efficient and adapt to the type
of pathogen.

Secondly, the term, positive regulation of mRNA processing and some research has been done
[57]. Alternative splicing of mRNA precursors is a nearly ubiquitous and extremely flexible point
of gene control in humans. It provides cells with the possibility to create protein isoforms of
differing, even opposing, functions from a single gene. Cancer cells often take advantage of this
flexibility to produce proteins that promote growth and survival.

About the next layer being associated with response to hydrogen peroxide, this study among others
has shown that [58] the production of hydrogen peroxide is connected with cancer. Fibroblasts,
can provide the necessary "fertilizer", accelerated aging, DNA damage, inflammation and cancer
metabolism, in the microenvironment tumor. By secreting hydrogen peroxide, cancer cells and
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fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local
and systemic inflammation, via the innate immune response (NFκB).

Finally, we have the last biological function (GO:0072576), liver morphogenesis, this function
having as link a part of the body and its morphogenesis corresponds to cell growth whereas cancer
represents cell division. Then regarding the last layer, no correspondence was found, that can
be explained by the fact that the last layer containing only 383 neurons, there is indeed little of
ENTERZID which will be then associated with the biological function.
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Conclusion

I learned a lot during this internship, passing the knowledge related to deep learning and in biology.
Although it was an internship in a public research laboratory, my work was not only to focus on the
theory and reflections on publications. I worked also on implementation in several segments with
different types of framework related to deep learning and a material that cannot be envied even
in some self-proclaiming boxes of artificial intelligence with unsuitable material and low investment.

This memory contains, a beginning of progression with the interpretability of neural networks in
the context of transcriptomic data. We have seen that biological information about the predictions
of cancer cases is not far from the current research that is done. However, the probabilities that
the batch of biological functions in association with the probes belong to the neurons with the
highest relevance score indicate to us that the model is very far from reliable and that especially
when it is more and more deep.

There is still some way to go before a physician decision assistant is in large-scale production
and follows the requirements and current legislation. But we still have ideas to explore, such as
techniques from the ensemble methods to improve the accuracy of the neural network but also
the modification of the neural network architecture because we currently tested only with 5 layers.

This internship was a first step in the world of research where I was able to follow a rigorous
methodology step by step process that took me several months to reach the result that we could
detail previously.
It has also been a professional experience where I collaborate with many researchers, for example
at monthly meetings when we discuss and exchange about the latest knowledge on the field of
deep learning.
Finally, with this first experience in research, I would like to continue directly via a CIFRE thesis
towards the sector of the applied research, in order to perfect my knowledge in this field which is
an important development of the future.
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7.1 Summary of the results on the work
The results are a start in the field of interpreting omics data with the use of neural network. It
has been found that the neural network does not completely realize its predictions on artefacts or
biological functions totally disconnect from cancer. On the other hand, the results vary a lot with
each learning of the network and the results are not robust and then the hypergeometric tests
show us that the values of the p-value are much too high to be considered actually in production.

One solution would be to use the techniques related to the ensemble methods that we will apply
to the neural network, for example if we train 100 different networks and apply the same reasoning
in order to extract the common biological functions and we keep the one with the most functions
in common, so we can already say that we have gone one step further in the consistency of our
results. Then as a last remark, I only use LRP as a relevance score technique with a ε fixed at
10−7, even if in our case it was not demonstrated any differences real we could also perform tests
with other techniques such as DeepLIFT.

7.2 Observations
Research around interpretation is growing, as the legislation has evolved, it is interesting to note the
idea of algorithmic responsibility. For example, DARPA, the US military research agency, allocated
$6.5 million in May 2017 to researchers to provide a "visual or written explanation" of its decisions.

Yet despite this research and wishful thinking, deep learning will probably be able to be transparent
and traceable to the good old computer code. But is it really a problem? "Psychologists have
shown that when you ask a human to explain a choice, it will build a justification after the fact
that will probably not be the real reason," said Peter Norvig, the director of research of Google,
June 2017. According to him, the same approach should be applied to Deep Learning: "One could
lead an algorithm to generate an automatic explanation of their results based on the data that
were provided." Our own reactions are often irrational, fruit of instinct, our subconsciousness or
our habits.

These are all the questions we need to face today if we want artificial intelligence to be at the
heart of our lives and to help us increasing our productivity and improve our way of life.
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Personal review

This internship was my first on a public research laboratory.
Indeed, I had already completed an internship in Master I, as data scientist intern at Eiffage. I
consider that this internship brought me a lot, both technically and theoretically.
First, about technical skills. I worked for six months on python programming. In addition, I used
tools specific to deep learning, so I was able to acquire and consolidate technical knowledge which
I did not have the opportunity elsewhere.

Outside of practice, I had the opportunity to make a state of the art on a very large and growing
topic. This allowed me to learn a lot about the field of deep learning. Also, Mr Hanczar invited
me to a meeting where the different participants presented their work or their last reading. It
helped me to have a broader vision and to get a little out of my internship topic.

However, the most important thing for me is that this internship allowed me to know what I
wanted to do later. I knew I wanted to work in the field of computing. The vastness of the latter
makes it difficult to choose. Thus, this master and this final internship allowed me to discover
learning and made me want to learn more and work in it.

Moreover, it was my first experiences in the field of research. Having already experienced business
experiences through internships and alternating, I highly appreciated the world of research. Therefore
I now aim to obtain a CIFRE thesis. This internship will have helped me to set goals, a career
plan, but also a credibility to achieve what I want.
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Model Summary

Figure A.1: Details for each layer of the neural network.
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LRP Distribution Score

Figure B.1: Distribution of relevance score for layer 6.
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Figure B.2: Distribution of relevance score for layer 5.

Figure B.3: Distribution of relevance score for layer 4.
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Figure B.4: Distribution of relevance score for layer 3.

Figure B.5: Distribution of relevance score for layer 2.
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Appendix C

Distribution of biological

Figure C.1: Top 10 GO functions on Layer 6.
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Figure C.2: Top 10 GO functions on Layer 5.

Figure C.3: Top 10 GO functions on Layer 4.
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Figure C.4: Top 10 GO functions on Layer 3.

Figure C.5: Top 10 GO functions on Layer 2.
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Appendix D

Accuracy plots

Figure D.1: Accuracy for α = 10−5 with Custom Loss.

Figure D.2: Accuracy for α = 106 with Custom Loss.
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APPENDIX D. ACCURACY PLOTS

Figure D.3: Accuracy for α = 1 with l2-norm.

Figure D.4: Accuracy for α = 10−5 with l2-norm.
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Appendix E

Cross-entropy plots

Figure E.1: Cross entropy for α = 1 with Custom Loss.

Figure E.2: Cross entropy for α = 106 with Custom Loss.
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APPENDIX E. CROSS-ENTROPY PLOTS

Figure E.3: Cross entropy for α = 1 with l2-norm.

Figure E.4: Cross entropy for α = 106 with l2-norm.
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APPENDIX E. CROSS-ENTROPY PLOTS

Figure E.5: Cross entropy for α = 10−5 with Custom Loss.

Figure E.6: Cross entropy for α = 10−5 with l2-norm.
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Appendix F

l2 Penality GO

Figure F.1: l2 Penality GO when α = 1 with Custom Loss.

Figure F.2: l2 Penality GO when α = 10−5 with Custom Loss.
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APPENDIX F. L2 PENALITY GO

Figure F.3: l2 Penality GO when α = 10−5 with l2-norm.
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Appendix G

l2 Penality NO GO

Figure G.1: l2 Penality NO GO when α = 10−5 with Custom Loss.

Figure G.2: l2 Penality NO GO when α = 1 with Custom Loss.
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APPENDIX G. L2 PENALITY NO GO

Figure G.3: l2 Penality NO GO when α = 1 with l2-norm.

Figure G.4: l2 Penality NO GO when α = 106 with l2-norm.
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Appendix H

Loss

Figure H.1: l2 Penality NO GO when α = 1 with Custom Loss.

Figure H.2: l2 Penality NO GO when α = 1 with l2-norm.
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APPENDIX H. LOSS

Figure H.3: l2 Penality NO GO when α = 106 with l2-norm.

Figure H.4: l2 Penality NO GO when α = 10−5 with Custom Loss.
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APPENDIX H. LOSS

Figure H.5: l2 Penality NO GO when α = 10−5 with l2-norm.

Figure H.6: l2 Penality NO GO when α = 106 with Custom Loss.
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Appendix I

Synthesis

I.1 Context
The subject of this internship is placed in the context of precision medicine. In our case, we have
transcriptomic data (gene expressions). Deep learning having greatly successful in the problems
of image classification and recognition of natural language [59], it is perfectly legitimate to ask
whether this could not be the case in precision medicine. This is the question that arise [60] about
biology. Indeed, there is a very large amount of data which are complex and poorly understood.
Deep learning could therefore give them sense.

It is important to have transparent systems since when any incident occurs, no one will be able
to provide a reasoned explanation to justify the underlying decision. How can one defend oneself
against a computer having declared you "terrorist" based on of its own judgment? What about
misdiagnosis for a serious illness? Who will be held responsible in case of an accident of an
autonomous car? The notion of "foreseeable harm", to which many legal texts refer, will be
impossible to define since the behaviour of an AI is inherently unpredictable. For example, the
European Commission accuses Google of favouring the results of its own shopping comparison in
its search results. A charge that will tomorrow be impossible to demonstrate if it is a self-learning
algorithm and not a human that feeds the search engine.

I.2 Motivations
As noted by [61], there is a problem with the very large size of the gene expression data and the
small number of examples. Thus, it can be difficult to be precise in the predictions, it must be
kept in mind that this is not the subject of this memoir. The second problem noted concerns
the "interpretability" of the neural network and its predictions. This is what [62] are interested
in. Indeed, it is clearly emphasized that the interpretation aspect would make it possible to
understand this multitude of data. In addition, this would be an opportunity to give confidence in
the predictions. It is this second problem which constitutes the subject of this memoir.

I.3 State of the art
As the subject of this dissertation relates to the fields of precision medicine and deep learning, two
things must be distinguished. On the one hand, for the biology aspect, we have some articles that
begin to deal with the use of learning deep ([62]). We note that the interest of deep learning has
grown. However, we find the two problems seen previously. In terms of interpretation, most papers
looked only at the value of weights and activations to try to interpret their models. However, no
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method specific to a biological interpretation has been put forward.
On the other hand, we have the interpretation of neural networks that has grown strongly and
gained popularity, especially in image processing. This can be seen in the [4] survey.
Among all the methods presented, we can discover what are called the methods of attribution of
relevance scores. We can assign a relevance score for each neuron. As a result, we will be able
to know which variable or which neuron has a determining role in the decision-making. We will
know what our model is based on. The main methods are Simple Gradient Method ([26]), LRP
([2]), DeepLIFT ([26]), Integrated Gradients ([27]) and Guided Backpropagation ([28]).

I.4 Personal contributions
To start I had to extract the biological informations associated with the probes on input in the
future neural network. A statistical analysis concerning the loss of informations such as probes,
genes and GO functions was performed. It turns out that there is 33% loss of probes and after
building the direct acyclic graph from the GO function of our dataset, I have taken all 5 levels
having the most GO functions continuously. An adjacency matrix was constructed from the direct
acyclic graph previously contrasts to add this information to a custom cost function during learning.

An implementation of the InOmicNet architecture was carried out on Tensorflow 2.0 with layers of
the custom neuron network as well as a very pushing monitoring system considering the precision,
the loss according to different norms, and the penalties. An in-depth research on the best
coefficiant regularizer was performed and a verification regarding of the different penalties GO
and NO GO too. Then retrieve the neurons associated with the best average score of relevance
from the LRP done but also an enrichment test on the return of 5000 probes and their associated
biological information compared to neurons taken previously. Finally, research on these biological
functions in return and their association on current research around cancer.

I.5 Potential use of work done
After this internship, the IBISC laboratory will have a documented source code that can be reused.
So, we could create a more comprehensive tool that would automate what was done experimentally.
This tool would not only give confidence to neural networks, but could also become a tool for data
analysis and contribute to medical research. In addition, the results obtained should be used to
write the thesis of Victoria Bourgeais and also future publications. In general, the interpretation
presented throughout this paper is valid for the entire field of learning. Thus, all areas using
learning would be impacted by this research topic. One can even imagine that this will become a
necessity since for several domains, the legislation requires a certain transparency (social networks,
public services, ...).

I.6 Prospects for work
There are many points to raise in the area of interpretation. First, terminology, interpretation
methods and validation methods should be standardized. In addition, we should define what is a
good interpretation. What are the criteria to respect? Since the interpretation is directly related
to human understanding, its quality becomes subjective.

For our case, the goal was to discriminate as many neurons as possible. However, this may
not be the case for all domains. Moreover, how to judge the interpretation of a neural network on
a domain in which our knowledge is still limited. For the future, it becomes an analysis tool and
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gives research leads, but it does not make it possible to judge the model.

The field of learning and the subject of interpretation being trending upwards, I think all of this
should happen in 5 or 10 years. The interpretation could give confidence to the neural networks
and participate in their adoption. However, it will be interesting to see if this gain in transparency
will be favourable at all levels for deep learning.

As for my future on this subject. I intend to continue in the field of deep learning. I do not
know if I will work directly about interpretation, this internship still allowed me to have advanced
knowledge on a key point of learning, which could work in my favour in the future.
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